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1. Introduction

A user of a database management system has an intuitive idea of a transaction as a
sequence of database commands that he or she submits. The user expects this sequence
of commands to be executed in the order of submission, without interference from other
database commands submitted by other users. Techniques for doing this while
concurrently supporting multiple database users are well known for conventional (i.e., not
multilevel) database systems [2]. Transaction management theory for conventional
database systems is not only mature, but useful in practice. The corresponding theory for
multilevel secure database systems is still developing but some progress has been made
[3,5,6,7,8,9,10].

In this paper we attempt to make further progress along a different dimension of the
problem. Most of the transaction management theory for multilevel secure database
systems has been developed for transactions that act within a single security class. In this
paper, we look at transactions that act across security classes, that is, the transaction is
a multilevel sequence of database commands, which more closely resemble user
expectations. We then give an algorithm for controlling concurrent execution of these
transactions on a particular mulitilevel secure database architecture.

2. The Problem2. The Problem

Human users of trusted database systems expect to execute what are effectively
multilevel transactions. A human user can log on at several security levels to accomplish
what he or she considers a single transaction. Users that do this expect the system to
execute the single level pieces of these multilevel transactions in particular way, i.e., in
the order they were submitted. In other words, the users expect the single multilevel
process to be executed atomically across security levels. Most commonly accepted notions
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of correctness and the attendant protocols for transaction processing in multilevel
multiuser database systems fail to satisfy this expectation of the users [3,5,6,7,8].

A user may log on at a low security level and update some information in the database,
and then subsequently log on at a higher level and attempt to use that information in a
high level transaction. More abstractly, the user wants to write a value to a low security
level data item and subsequently read it again from a higher level process. The user then
expects that the value read will be the value he or she just wrote at the lower level, but
this may not be the case unless both the read and write operations are implemented
within a single atomic process. 

In conventional database system environments, the expected behavior is ensured by
including the two operations in the same transaction, or simply using the value without
rereading it. Unfortunately, in the multilevel security environment, where transactions
have been treated as single level subjects, the global transaction must be decomposed into
multiple single level ones. 

If the usual criteria of correctness for transaction processing (usually a serializability
condition [2]) are then applied to these resulting single level transactions, the results may
be contrary to the expectations of the user who submitted them. Without somehow
enforcing the implicit ordering among the conflicting single level components, the
scheduling process may reorder these components in another way. In the preceding
example, the scheduler may delay the single level transaction that writes the newest
value to the low level data item until after executing the higher security single level
transaction, without violating the typical serializability requirement. Moreover, given two
(or more) such global, multilevel transactions, the scheduler may interleave the single
level transactions so that the multilevel transactions do not read the data items
consistently, again still satisfying the serializability condition on the single level
transactions, though not for the multilevel ones as expected by the user. The user expects
the multilevel transaction to satisfy a serializability condition over all levels of the
transaction.

An example should clarify the discussion. Suppose we have a multilevel secure database
system that manages information about the status of all the nuclear warheads in the
world. On edatabase in the system has information obtained by a special reconnaissance
satellite. This satellite has a sensor that can pinpoint the location of nuclear warheads
even when they are shielded, etc. The sensor has a very narrow aperture and scans
regions of the earth using programmed patterns. There are two kinds of information in
the satellite database: the ground track or location of the satellite, denoted by x, and the
orientation of the satellite's sensor, denoted by y. The location of the satellite is
unclassified, since it cannot be concealed.
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Consider the problem of entering two successive reports from the satellite. We will simply
number the reports One and Two. The value of y stored in the database is a function of
x, that is y(x). Each report is entered by a sequence of multilevel secure database
operations:

write(x);
change_session_level(S);
read(x);
write(y);

If the report is entered as single-level transactions, one possible result is:

     One      Two
write(x);

write(x);
change_to_level(S);
read(x);

change_to_level(S);
read(x);

write(y);
write(y);

Since other transactions and users could access the database at any point during these
updates, there are several views of the information that could be read. The database
users need and expect the database to present a state containing x1,y1(x1) when report
One has finished and a state containing x2,y2(x2) when report Two has finished. Instead,
after report One has finished we have a state with x2,y1(x2). This view does not represent
any real search performed by the satellite. 

Speaking more theoretically, if we view this activity as two multilevel transactions, the
schedule above is not serializable. If it is viewed as four single level transactions, then the
schedule is serializable (as can be verified by examining the serialization graphs for the
two cases).

The problem, then, lies in reconciling security considerations with the notion of
transaction as it is commonly used in the database world. Transactions are atomic, in the
sense that the transaction either executes completely and the results are made
permanent, or it aborts and has no effect on the system. Beyond this, transactions are
independent in the sense that no transaction communicates with any other transaction.
This requirement is the source of the problem to be addressed in this paper. When a
transaction that is inherently multilevel is decomposed into single level ones, any
dependencies that may have existed between the levels of the original transaction are lost.
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The next sections of this paper contain a discussion of how one might approach this
problem and what approach we have chosen to make the problem tractable. To do this we
will look at a restricted set of multilevel transactions and a notion of correctness for
concurrent execution of them. We then turn our attention to providing a solution to this
problem, a concurrency control algorithm for multilevel secure databases with replicated
architecture. 

3. Approaching the Problem3. Approaching the Problem

An obvious, but obviously unacceptable, solution is to trust the entire system. Practically,
for a solution to be acceptable, the amount of trusted software that would have to be
developed and evaluated should be minimal. In other words, a solution is viable only if
a large proportion of the activities required can be carried out by untrusted processes.

If multilevel transactions are permitted to read and write data at all levels arbitrarily (at
or below the clearance level of the user running the transaction), it is extremely difficult
to eliminate the overt channel caused by a high level subject simply reading high level
data and writing it into a low level data item. Because of the trust placed in the users,
this behavior would be permitted in the paper world. Accomplishing the same thing in an
automated system requires that the system be trusted from the security kernel up to the
user interface, i.e., virtually the whole system would have to be trusted.

These considerations argue for some restrictions on the transactions that will be
permitted. The difficulty related above results from allowing data to be written to a lower
level after data has been accessed at a higher level. Disallowing these "writes-down"
eliminates this difficulty. In other words, we permit only those multilevel transactions
that, once having accessed data at a high level, can no longer write data at any lower
level. This restriction assures that no information can flow from high levels to lower levels
via operations of a transaction. It does not preclude covert channels arising from
concurrent execution of transactions. One consequence of this restriction is that these
multilevel transactions can be parsed into a sequence of single level subtransactions that
can be executed in non-descending order of their security classes.

It is also necessary to adopt an appropriate concept of correctness for processing of these
transactions. While the specific definition of correctness depends on the underlying
architecture of the database system, there appears to be no reason to abandon
serializability, as applied to the entire multilevel transaction, as the criterion. The ideas
of this section will be presented more formally, and with further explanation, in our
presentation of the model, below.
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4. The Model4. The Model

The security model used here is based on the fundamental access control restrictions of
Bell and LaPadula [1], as applied to the replicated architecture. The notation for the
security and the replicated architecture database model is adapted from that in Jajodia
and Kogan [5], and that for the basic concepts of transaction processing from Bernstein,
et al, [2].

4.1. Security Model4.1. Security Model

The database system (DBS) consists of a finite set D of data items that are objects of the
trusted system, and a finite set T of single-level transactions, which act on behalf of users
at a single security level, and are subjects of the trusted system. Admissible multilevel
transactions, which will be more clearly specified below, will be constructed from the
elements of T. There is a lattice SC of security classes, (SC,<). If security classes u and
v are in SC then u dominates v if v ≤ u. There is also a labeling function L that assigns
unique security classes to data items and transactions:

L:D∪T → SC

The notion of security here only encompasses mandatory access control requirements.
Discretionary access control issues are not discussed. The mandatory access control
requirements are:

(1) If single-level transaction T reads data item x then L(T)≥L(x).

(2) If single-level transaction T writes data item x then L(T)=L(x).

Single-level transaction will be defined more carefully later. For now, one can think of a
transaction executed by a single-level subject. Enforcement of these two conditions
guarantees that information concerning high security level data items cannot flow to
lower security level transactions (and users). The second condition is more restrictive than
the usual  -property in that T cannot write data item x if L(T)<L(x), i.e., no write-ups
are permitted. In [5], it is argued that write-ups are undesirable in trusted database
systems for integrity reasons and may permit covert channels. In any case, many
transactions that write up in security level can be treated as a simple special instance of
the multilevel transactions to be defined later in this paper. 

4.2. DBS Architecture4.2. DBS Architecture
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The model for the replicated architecture used here is adapted from that described in [4].
The replicated database architecture is obtained by including a collection of single-level,
untrusted database systems in the security model, one for each security class. That is, a
set {Cv v∈SC} of back-end databases is added. The system also contains a front-end
processor, the trusted front end (TFE), which mediates the access of subjects
(transactions, both single and multilevel) to objects (data items) in the back-end
databases. The TFE will contain the trusted computing base (TCB), but not all of the
TFE need be trusted. In particular, much of the scheduling mechanisms for the algorithm
will be in the untrusted portion of the TFE.

Each database Cv contains copies of all data items in all databases whose security level
is dominated by v. The copy of data item x in the database Cu is denoted by xu.
Alternatively, if L(x)=u so x∈Cu, there is a copy of x in each database whose security level
dominates u.

4.3. Transaction Model and Concepts4.3. Transaction Model and Concepts

A database transaction is the execution of a set of atomic operations on the data items of
the database. The operations permitted on the data items are Read(x), which returns the
value stored by the data item, and Write(x), which changes the value of the data item to
a specified value. Other transaction operations such as Start, Commit, and Abort, while
significant for the control of transaction processing [2], need not be made explicit for
communicating this algorithm. In fact, only committed transactions will be considered in
defining the algorithm. If T is a transaction, then a Read(x) operation by T is denoted
rT[x], and a Write(x) operation by wT[x].

Definition A transaction T is a totally ordered set with ordering relation <T where T ⊆
{r[x] x∈D} ∪ {w[x] x∈D}.

The definition requires that operations of a transaction be linearly ordered. We note here
that the weaker definition of [2], which requires only a partial ordering could be used at
some increase in the complexity of other definitions to accommodate multiple reads of the
same data item. We will avoid this complexity by the assumption above. We say two
operations, from perhaps different transactions, conflict if they operate on the same data
item and at least one of them is a Write. 

A single-level transaction is distinguished from a multilevel transaction by the fact that
the latter mimics the behavior of an individual user who can log onto a multilevel system
at any security level dominated by his clearance level. Thus a multilevel transaction is
a transaction in which each operation is intended to be executed at a particular security
level. Unless a security level is associated with an operation as part of the definition of
the transaction, ambiguity in what is intended can occur. The operations of the multilevel
transaction should be executed from the same security level as a user would enter them.
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An operation of such a transaction can be viewed as a pair (o[x],a), where o[x] is an
operation on a data item and a is the security level from which the operation is to be
executed. The security policy requires that a dominate L(x) in the security lattice when
o is a Read operation, and be the same as L(x) when o is a Write operation. For
simplicity, we write (o[x],a) as oa[x] and refer to oa[x] as a multilevel operation.

We rely on context to discriminate between oa[x], which is an operation on x specified by
the user on a logical data item in a hypothetical single-copy database, and oa[xu], which
is the corresponding operation performed by the replicated system on a particular copy
xu of x in Cu.

The concept of multilevel transaction needs to be reformulated in terms of multilevel
operations. 

Definition A Definition A multilevel transaction T is a totally ordered set with ordering
relation <T where T ⊆ {ra[x] x∈D and a∈SC} ∪ {wa[x] x∈D and a∈SC}. In addition, if
ra[x]∈T then L(x)≤a, and if wa[x]∈T then L(x)=a.

Notice that if we have a multilevel transaction for which all operations are executed from
the same security level, then we have a conventional single-level transaction. We can now
specify more formally the class of multilevel transactions that are of interest in this
paper.

Definition A multilevel transaction T is admissible if for all x,y in D, oa[x] <T wb[y]
implies b a.

A consequence of this restriction is that an admissible multilevel transaction T is
equivalent to the sequence TaTb     Tz where each Tu is a single-level transaction
executing at security level u, which consists of all the operations of the form ou[x]. This
follows from the fact that two transactions are equivalent if one can be transformed into
the other by interchanging adjacent pairs of non-conflicting operations [10]. If Ta contains
the operation o[x], we write oTa to distinguish that operation.

Definition A multilevel transaction T is in canonical form if T=TaTb     Tz where each
Tu consists of all operations of the form ou[x], x∈D. Moreover, if Tu precedes Tv in this
decomposition, then v u.

It is standard to assume that transactions read or write each data item at most once. We
can see from our earlier example that this assumption is inappropriate for multilevel
transactions with respect to read operations. However it is reasonable to enforce this
condition on the single-level components, the Tu. This is not a severe restriction for the
same reasons usually given for ordinary transactions [2].
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Operations of several transactions can be commingled to permit concurrent execution.
Execution of a set of transactions is represented as follows. 

Definition A complete multilevel history H over a set of multilevel transactions {S, T,    
, Z} is a partial order with ordering relation <H where

(1) H ⊇ S ∪ T ∪     ∪ Z

(2) <H ⊇ <S ∪ <T∪     ∪ <Z

(3) If p, q are operations of H which conflict, then either p<H q, or q<H p.

Since only complete histories will be considered, they will be referred to simply as
histories. Moreover, all histories are multilevel histories.

The preceding view of transaction processing is the view of the user, to whom replicas or
versions of data items are transparent. Histories of this type will be called one-copy
histories when it is necessary to distinguish them from histories that represent the
system's view of a transaction, which must deal with copies of data items.

From the system's point of view, when a set of transactions is executed by a replicated
DBS, an operation in a transaction must be translated into the equivalent operation on
some or all of the copies of the data item. A translation function h performs the mapping.
For a Read(x), h determines the copy of x to be read,and for a Write(x), h determines
what copies of x are to be updated. In the case at hand, h(rTa[x])={rTa[xa]}, and
h(wTa[x])={wTa[xv] v≥a in SC}. That is, logical Read operations are translated to Read
operations on the actual copy of the data item at the security level of the operation, but
logical Write operations must be translated to Write operations on all actual copies at
higher security levels as well. Notice that although a multilevel transaction can read a
data item more than once, since any given read operation is associated with a security
class, it translates to a read operation on a single copy in the replicated database. In the
case of write operations, updates must be propagated to all back-end databases at higher
security levels.

The idea of a replicated data history is needed to represent the actions of the translated
transactions on the replicated data. In the replicated architecture, two operations on data
items conflict if they operate on the same copy of the data item and at least one of them
is a Write. In the following definition, o[x] represents either a Read(x) or a Write(x)
operation.

Definition A multilevel replicated data history H over a set of multilevel transactions
T={S, T,    ,Z} is a partial order with ordering relation <H such that

8



(1) H=h(S) ∪ h(T) ∪     ∪ h(Z)

(2) If rVa[x]<V oVb[y] in transaction V, then h(rVa[x])<H p for all p∈h(oVb[y])

(3) If wVa[x]<V oVb[x] in V, then wVa[xu]<H oVb[yu]for all u∈SC such that u≥a and u≥b

(4) If p, q∈H and they conflict, then either p<q or q<p

(5) If wVa[x] < rVb[x], then wVa[xb] is in h(wVa[x])

Replicated data histories represent the execution of a set of transactions as seen by the
entire MLS-DBS rather than as seen by the user, to whom copies of data items are
transparent. Notice that such histories preserve the orderings stipulated by the
transactions (conditions (2) and (3)), and that this together with (5) ensures that if a
transaction writes into a data item before it reads it, then it must subsequently read the
value that it has written. 

The ideas of reads-from and final write are essential to understanding the relationships
among histories over the same set of transactions. These may be defined for one-copy or
replicated data histories. 

Definition Let H be a multilevel history (one-copy or replicated data) over a set of
transactions T.

(1) Transaction T reads-x-from S in H if wS[x]<H rT[x] and there is no transaction V∈T
for which wS[x]<H wV[x]<H rT[x]

(2) wT[x] is a final write of x in H if there is no V∈T for which wT[x]<H wV[x]

This definition clearly makes sense for one-copy histories, and does also for replicated
data histories if applied to a single copy of a data item. That is, "T reads-xu-from S" and
"wV[xu] is a final write of xu" are meaningful. These ideas are used to define the notion
of equivalent histories.

Definition Let H and G be multilevel histories of the same type (one-copy or replicated
data) over the same set of transactions. H and G are view equivalent if they have
precisely the same reads from relationships and the same final writes.

Correct execution of a set of transactions should appear to the user as if the transactions
were executed one at a time in some order. This concept of correctness is formalized as
follows.
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Definition A multilevel history H is serial if for every pair of multilevel transactions S,
T of H, either all operations of S appear before all those of T, or vice versa. A history H
is serializable if it is view equivalent to a serial history. 

Our algorithm for processing multilevel transactions on a replicated architecture database
gives rise to a multilevel replicated data history. This history will represent a "correct"
execution of the transactions if it appears to the user that the transactions executed
serially on a one-copy database. Therefore a notion of equivalence between a one-copy
history, the user's view, and a replicated data history, the system's view, is necessary.
This requires the following definitions. 

Definition If H is a multilevel replicated data history, say T reads-x-from S in H if 

(1) For some a∈SC, wSa[x]∈S

(2) For all b∈SC, b≥a, if rTb[x]∈T, then T reads-xb-from S

Definition Let H and H1C be multilevel replicated data and one-copy histories,
respectively, over the same set of transactions T. H and H1C are equivalent if

(1) H and H1C have the same reads-from relationships, i.e., T reads-x-from S in H if and
only if T reads-x-from S in H1C.

(2) For each final write wTa[x] in H1C, wTa[xu] is a final write in H for some u∈SC.

Definition A multilevel replicated data history H is one-copy serializable (ML-1SR) if it
is equivalent to some one-copy serial multilevel history.

ML-1SR is the criterion for "correctness" thatwill be applied to algorithms for transaction
processing in a multilevel replicated architecture database. The algorithm to be described
herein yields multilevel replicated data histories thatare ML-1SR.

To specify the algorithm, we need a few additional concepts. First, we define the update
projection UT of a transaction T to be {wT[x] wT[x]∈T}. If T is a read-only transaction,
a dummy update projection is created. If T=TaTb     Tz, then UT=UTaUTb     UTz. For
each transaction Ta, UTa can be regarded as a single-level transaction that must be
executed at each database Cu for which u>a, to propagate the updates generated by Ta.
In particular, each transaction Ta on the replicated database can be decomposed into a
primary transaction, which is also denoted Ta, which acts on Ca, and its update projection
UTa, which acts on Cv for v>a. It is often useful to think of a primary component or an
update projection as a one-copy transaction acting on a single back-end database.
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Since any two multilevel transactions S and T eventually execute operations, either
primary or updates, at a common security level (all transactions execute their updates at
the highest security class) then there is a lowest point in SC where this occurs. This
collision point is determined as follows. Without loss of generality, we can assume that
any multilevel transaction has a single level component whose security class is the
greatest lower bound of the security classes of its other single level components. Let s and
t be the minimum security classes of S and T respectively. Then the collision point of S
and T is max{s,t}. The significance of the collision point of two transactions, S and T is
that it determines the first point in the execution of database operations where the
(serialization) order of the two transactions becomes relevant. Below the collision point,
the relative orders of executing the operations of the single-level components of S and T
are irrelevant with respect to serializability. The idea of collision point will become clearer
when the algorithm is described.

5. Description of the Algorithm5. Description of the Algorithm

The problem is to define a protocol for executing the primary transactions and the update
projections in the "correct" way. As previously mentioned, a protocol will be considered
"correct" if the resulting replicated data history is ML-1SR.

In the following, the symbol < will be used for all order relations (on the security lattice,
transactions and histories). The intended order relation will be clear from the context in
which it is used. The notation Ta will be used for both the transaction on the one-copy
database and its primary component on the back-end database, with the context again the
arbiter. 

We give an overview of the algorithm before describing it in detail. The user who wishes
to execute a multilevel transaction logs onto the system at a security level at or below
that of any operation of the transaction (the greatest lower bound of the levels of the
operations, say), and submits it to the TFE. The TFE puts the transaction in canonical
form if necessary, and rejects it if it is not admissible. It verifies that the user's clearance
dominates the security levels of all the operations. A trusted process at the log-in level
distributes the single-level components of the transaction by writing down to the
appropriate levels. A component whose security level does not dominate that of any other
component may be sent to the scheduler in the corresponding back-end database. Other
components are held awaiting their dispatch to the back-end database.

As single-level components and update projections from lower level security levels are
executed, the resulting serialization order from the back-end scheduler is maintained as
a list in the TFE at the level of the back-end database. At the next higher security level,
there is an untrusted process in the TFE that can view the lists at lower levels and
determine when it is permissible to retrieve an update projection from these lower level
lists for execution. When it is permissible, the update projections from all lower level
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components of the same multilevel transaction are retrieved, and any current level
component of it is appended. The entire package is sent to the scheduler in the back-end
database. The process continues until the transaction percolates up to the highest security
level. We now take a more detailed look at the algorithm.

The algorithm is a variant of the usual primary site algorithm for replicated database
systems [2]. Each back-end Cu will have a scheduler Bu that produces view serializable
schedules for the transactions executed there (primary components and update
projections). In addition, Bu must preserve, in its serialization ordering, the order in
which it receives conflicting update transactions. There are several types of schedulers
that accomplish this, among which are variants of conservative two-phase locking and
conservative timestamp ordering protocols [2]. Bu need not be trusted. 

A transaction T=TaTb    Tz or an update projection U=UTaUTb   UTz can be considered
a sequence of single-level transactions or update projections. Consequently, we can speak
of prefixes or subsequences of them. We will use this framework in manipulating
sequences of these entities to "grow" update projections as the transactions are executed
through the security lattice. We will need the concept of a shuffle of two sequences, which
is any sequence whose elements are exactly those of the original two sequences and
contains each as a subsequence.

Given any level m in SC, Pm(UT) is the subsequence of UT containing those single-level
update projections in UT whose security level is dominated by m. (Pm can be defined
similarly for transactions.) That is, Pm(UT) represents the sequence of update projections
in U that must be executed at Cm to maintain data consistency. It can be regarded as a
single-level transaction at Cm.

A list Qm is associated with each back-end database Cm. The purpose of Qm is to maintain
a list of the Pm(UT) that have been committed at Cm. The list is ordered by the
serialization order of the execution of these transactions, which need not agree with the
order in which transactions are actually executed or committed. The Qu are used to make
the correct order of execution at lower security level back-end databases available to those
at higher security levels.

In addition, there is, for each u∈S, an untrusted mechanism Ru that maintains Qu and
can read the contents of Qv for all v≤u and is considered part of the global scheduler.
Beyond this, Ru can receive and hold for execution the single-level components of
transactions initiated at security levels dominated by u.

The actual location of the Qu or Ru is not important for the correctness of the protocol, but
since any access to them must be monitored by the TCB, it is most efficient for them to
be within the untrusted part of the TFE.
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Recall that u covers v in a lattice if u>v and there is no w for which u>w>v. The
distribution and timing of the update projections is controlled by the untrusted process
Rv for v>u. If v covers u, Rv can scan Qu, retrieve an update projection, and dispatch it
to the scheduler at Cv. The crucial part of the protocol is in specifying the rules for
retrieval and manipulation of the Pu(UT) by Rv. If not done correctly, the resulting
histories will not be ML-1SR.

Notice that each Cu, in isolation, can be considered a one-copy database. Primary
transactions with security level u, and update projections from transactions whose
security level is dominated by u can be considered as transactions on this one-copy Cu.
Therefore, the ideas of scheduling, execution, and commitment can be applied to these
transactions locally (at Cu). The scheduler Bu can generate a serializable schedule for
these transactions at Cu and, as they commit, place the update projections into Qu in the
order of an equivalent serial schedule. The reader is referred to [5] for methods of placing
update projections into Qu in serialization order when that order differs from the commit-
time ordering. 

The protocol processes transactions as follows.

At each back-end database Cu:

I.1 Primary transactions and update projections are received from the TFE and submitted
to the local scheduler. Actions on data items are translated into the correct actions on
local copies.

I.2 As local transactions (primary transactions and update projections) are committed, a
report of their commitment is sent to the TFE. These reports are sent in an order
consistent with the serialization order determined by the local scheduler.

At the TFE:

II.1 For each transaction T=TaTb    Tz submitted to the TFE, the single-level component
Tl is distributed to Rl. Rl submits Tl to Cl immediately if l dominates no other
component's security class. Otherwise Tl is held awaiting execution.

II.2 The Ru scan the lists Qv for those v for which u covers v, looking for Pu(UT) satisfying
the following conditions:

a. Ru has already retrieved and processed (as described below) all Pv(US) that were
serialized before Pv(UT) by Bv.

b. If u also covers w, and Pw(UT) will eventually appear in Qw, then Pw(UT) does appear
in Qw.
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When these conditions are satisfied, Ru retrieves the string Pv(UT) for the v covered by
u, and creates a shuffle of them, say Uu. If transaction T has a single-level component at
level u that is being held by Ru, then it is appended to the shuffle forming UuTu. The
resulting string of update projections and (possibly) a primary component is submitted as
a single transaction to the scheduler Bu at Cu for processing.

II.3 Whenever a commitment report for some UuTu is received from Cu, it is added to the
end of Qu as Pu(UT).

The crux of the algorithm is II.2 because it controls the order in which updates are
distributed to each back-end by holding the submission of updates until preceding updates
are submitted. The condition testing can be performed by untrusted mechanisms. 

The condition III.2.a is clearly detectable by Ru. The significance of checking this
condition is to ensure that for transactions S and T, their relative order serialization
order determined at their collision point is maintained at all higher security levels.

Condition III.2.b is detectable by Ru because if u covers both v and w, and Pv(UT) appears
in Qv, then Pw(Uw) will appear in Qw if and only if T was initially submitted at a security
level that is dominated by both v and w. The significance of checking this condition is to
ensure that all conflict relationships between transactions that occur below security level
u have been recognized.

The replicated architecture must exact the price of maintaining the consistency of the
replicated data. In this algorithm, the price is paid in two ways. First, there is the
overhead of maintaining the lists and holding components for future processing in the
TFE, in terms of both the space required and the added processing. Second, because
updates are delayed, and the delay increases as the distance from the security level where
submitted to higher levels increases, transactions at higher security levels may read data
that may not be current. However, this algorithm is much faster than using single level
transactions with repeated log-ins, and it guarantees the atomicity of the user's process
as a whole.

6. Proof of Correctness6. Proof of Correctness

We will give only a brief version of the proof here. A more formal proof parallels that
given in [3], and those interested are referred to that paper. We need to show the
multilevel replicated data history created by the algorithm is ML-1SR.

First, we need a candidate for an equivalent one-copy serial multilevel history. To specify
this, let m be the maximal element of the lattice SC. Then for each multilevel transaction
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T, Pm(UT) and T are equivalent as ordinary transactions on Cm. The serialization order
for the Pm(UT) in Qm defines the one-copy serial history for the multilevel transactions.

A key observation in seeing that the algorithm is correct is that for each pair of multilevel
transactions, their relative serialization order will be established by the scheduler in the
back-end database corresponding to their collision point. The algorithm then preserves
that order at all higher level back-end databases. Below the collision point, the order of
execution of the operations these two transactions is irrelevant since no ordering between
them can be established there. It is relatively straightforward to see that the one-copy
history is equivalent to the multilevel replicated data history, as follows.

Obviously, final writes are the same in the two histories. If T reads-x-from S in the one-
copy serial history, then there is an a∈SC for which T reads-xa-from S in the replicated
data history. If T fails to read-x-from S in the replicated data history, then there is a
b∈SC, b≥a, for which rTb[x]∈T and T does not read-xb-from S. That is there is some
multilevel transaction V that writes xb between S writing it and T reading it. Then V
conflicts with both S and T and would have to fall between them in the one-copy history,
which contradicts the original assumption.

Conversely, if T reads-x-from S in the multilevel replicated data history, then there is
some point a∈SC for which T reads-xb-from S for all b≥a. This condition, in the one-copy
history, precludes any transaction writing the data item x between S and T. Thus T
reads-x-from S in the one-copy history.

In a general sense, it is not possible to improve on this algorithm. Once one-copy
serializability is selected as the criterion for correctness, the preservation of the relative
serialization orders at all security levels must be maintained. Establishing this order at
a high security level would require that this information be made known to lower security
levels, and thus create a potential covert channel. Therefore any algorithm for the
replicated architecture of the primary site type that guarantees one-copy serializability
must establish the serialization order between transactions at the lowest possible level
and maintain it by propagating it up through the security lattice. The algorithm
presented here demonstrates one way to do this by reading down to lower levels to learn
the correct order. A technique that writes up could be used as effectively. A more
optimistic approach might be to initially distribute a transaction to all appropriate back-
end databases simultaneously and execute them. As the serialization order is propagated
upward from lower security classes, transactions that were improperly ordered at higher
levels would have to be rolled back and redone. Depending on the specific application and
system there are many implementation variants on this theme, but the basic requirement
to determine the order at the lowest level and sustain it remains.

We should point out that there are some variants of the "immediate write" class of
algorithms thatavoid this upward propagation by executing write operations
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simultaneously at all levels, but these have significantly more overhead. The concurrency
control mechanisms of the back-end databases are disabled and is implemented in the
TFE instead. Operations on data are performed one at a time and "simultaneously" on
all the back-end databases.

7. Garbage Collection and Recovery7. Garbage Collection and Recovery

In implementing the protocol as described, the size of the lists, the Qu, can become
arbitrarily large. This may waste storage as well as increase the execution time for
scanning the Qu by Ru. To remedy this situation, some form of garbage collection should
be included to maintain the Qu at reasonable dimensions.

The security policy does not allow Ru to access information that would indicate whether
a particular Pu(UT) must be kept for future use by the protocol, as this depends on
information known only at higher security levels. Therefore, garbage collection requires
that trusted mechanisms be used. The earliest point at which a particular Pu(UT) may be
discarded from Qu is when Ui has been retrieved from it (and dispatched to the
appropriate back-end database) by all the Rv for which v dominates u. 

Trusted components could be built to perform the deletions at this point, but would be
inordinately complex for the task. A more likely approach would be to wait until a
particular Pm(UT) is inserted into Qm, where m is the maximum class in the security
lattice. In fact, this may be the only reason for maintaining Qm (other than to simplify the
proof of correctness), since it is otherwise unnecessary. A relatively simple trusted
mechanism could then remove Pu(UT) from all of the relevant Qu. Such a mechanism can
be invoked at regular intervals. Doing garbage collection at the checkpoints taken for
recovery purposes may be sufficient.

As for recovery, the back-end databases have their own recovery managers, so that the
only concern is the recovery of the contents of the dynamic data structures in the TFE.
The recovery scheme to accomplish this is straightforward and quite similar to what is
generally used for databases. A log is maintained in the stable storage corresponding to
security level u. The log for security level u can be located on the same hardware as the
back-end database Cu to maintain security of the recovery logs. Alternatively, a collection
of single level logs could be maintained in the stable storage dedicated to the TFE.
Whenever Ru receives an update report from a back-end database and adds it to Qu, or
receives a component single-level transaction for later execution, a log entry is created
and written to the log in stable storage. If the TFE should fail, the logs can be used to
reconstruct the Qu and the data structures of Ru.

In addition, as for databases in general, a checkpoint can be taken, recording the state of
the whole DBS. Performing the garbage collection function at this point and pruning the
logs of any unnecessary entries reduces the amount of data that is stored. 
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After a crash, recovery is accomplished by restoring the state at the last checkpoint and
using the logs to update the DBS to the point of failure. The proposed technique requires
little trusted code.

8. Conclusion8. Conclusion

The notions of "correctness" for transaction processing that are usually suggested for
multiuser databases are not necessarily appropriate when these databases are also
multilevel secure systems. Users' expectations may not be met if what the user considers
a single transaction is decomposed into a sequence of single-level transactions that are
then treated as non-communicating entities by the system's concurrency control
mechanisms. It is incumbent upon those who develop multilevel secure database systems
to ensure that the users' needs and expectations are met to avoid misunderstandings
about the system's functionality.

In this paper we have proposed a definition of multilevel transaction for multilevel secure
databases and defined a notion of correctness that is consistent with the traditional idea
of correctness for replicated systems. To demonstrate the applicability of these ideas, an
algorithm for correct transaction processing within this framework was presented for
replicated architecture multilevel databases.

We chose to develop the algorithm for this architecture since we are actively involved in
building a prototype of such a system. The problem for multilevel secure database systems
based on the kernelized architecture, however, is no less interesting a research issue. An
algorithm for this case, using a multiversion technique, will be the subject of future work.
In addition, there is a need to extend these notions to a more general class of multilevel
transaction.
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